Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Minimum Error Entropy Classification
Hoofdkenmerken
Auteur: Joaquim P. Marques de Sá; Luís M.A. Silva; Jorge M.F. Santos; Luís A. Alexandre
Titel: Minimum Error Entropy Classification
Uitgever: Springer Nature
ISBN: 9783642290299
ISBN boekversie: 9783642437427
Prijs: € 107,90
Verschijningsdatum: 25-07-2012
Inhoudelijke kenmerken
Categorie: Intelligence (AI) & Semantics
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS