Content-Length: 19426 Content-Type: text/html; charset=UTF-8 SALUS
Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Mathematical Foundations of Nature-Inspired Algorithms
Hoofdkenmerken
Auteur: Xin-She Yang; Xing-Shi He
Titel: Mathematical Foundations of Nature-Inspired Algorithms
Uitgever: Springer Nature
ISBN: 9783030169367
ISBN boekversie: 9783030169350
Prijs: € 71.93
Verschijningsdatum: 08-05-2019
Inhoudelijke kenmerken
Categorie: Algorithms
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS