Content-Length: 19006 Content-Type: text/html; charset=UTF-8 SALUS
Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Hoofdkenmerken
Auteur: Giovanni Motta; ‎Francesco Rizzo; ‎James A. Storer
Titel: Hyperspectral Data Compression
Uitgever: Springer Nature
ISBN: 9780387286006
ISBN boekversie: 9780387285795
Editie: 1
Prijs: € 167.85
Verschijningsdatum: 03-06-2006
Inhoudelijke kenmerken
Categorie: Storage & Retrieval
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS