Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Artificial Neural Nets and Genetic Algorithms
Hoofdkenmerken
Auteur: Andrej Dobnikar; Nigel C. Steele; David W. Pearson
Titel: Artificial Neural Nets and Genetic Algorithms
Uitgever: Springer Nature
ISBN: 9783709163849
ISBN boekversie: 9783211833643
Editie: 1
Prijs: € 107,90
Verschijningsdatum: 06-12-2012
Inhoudelijke kenmerken
Categorie: Intelligence (AI) & Semantics
Taal: English
Imprint: Springer
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

From the contents: Neural networks – theory and applications: NNs (= neural networks) classifier on continuous data domains– quantum associative memory – a new class of neuron-like discrete filters to image processing – modular NNs for improving generalisation properties – presynaptic inhibition modelling for image processing application – NN recognition system for a curvature primal sketch – NN based nonlinear temporal-spatial noise rejection system – relaxation rate for improving Hopfield network – Oja's NN and influence of the learning gain on its dynamics Genetic algorithms – theory and applications: transposition: a biological-inspired mechanism to use with GAs (= genetic algorithms) – GA for decision tree induction – optimising decision classifications using GAs – scheduling tasks with intertask communication onto multiprocessors by GAs – design of robust networks with GA – effect of degenerate coding on GAs – multiple traffic signal control using a GA – evolving musical harmonisation – niched-penalty approach for constraint handling in GAs – GA with dynamic population size – GA with dynamic niche clustering for multimodal function optimisation Soft computing and uncertainty: self-adaptation of evolutionary constructed decision trees by information spreading – evolutionary programming of near optimal NNs
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS