Content-Length: 19993 Content-Type: text/html; charset=UTF-8 SALUS
Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Adversarial Robustness for Machine Learning
Hoofdkenmerken
Auteur: Pin-Yu Chen; Cho-Jui Hsieh
Titel: Adversarial Robustness for Machine Learning
Uitgever: Elsevier S & T
ISBN: 9780128242575
ISBN boekversie: 9780128240205
Editie: 1
Prijs: € 115.04
Verschijningsdatum: 20-08-2022
Inhoudelijke kenmerken
Categorie: Intelligence (AI) & Semantics
Taal: English
Imprint: Academic Press
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

\u003cp\u003e\u003ci\u003eAdversarial Robustness for Machine Learning\u003c/i\u003e summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. \u003c/p\u003e \u003cp\u003eIn addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. \u003c/p\u003e\u003cul\u003e \u003cli\u003eSummarizes the whole field of adversarial robustness for Machine learning models\u003c/li\u003e \u003cli\u003eProvides a clearly explained, self-contained reference\u003c/li\u003e \u003cli\u003eIntroduces formulations, algorithms and intuitions\u003c/li\u003e \u003cli\u003eIncludes applications based on adversarial robustness\u003c/li\u003e\u003c/ul\u003e
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS