Nederlands
  nl
English
  en
contact veelgestelde vragen
log in
VU
 
Data Mining
Hoofdkenmerken
Auteur: James Foulds; Ian H. Witten; Eibe Frank; Mark A. Hall; Christopher J. Pal
Titel: Data Mining
Uitgever: Elsevier S & T
ISBN: 9780443158896
ISBN boekversie: 9780443158889
Editie: 5
Prijs: € 83,87
Verschijningsdatum: 04-02-2025
Inhoudelijke kenmerken
Categorie: Intelligence (AI) & Semantics
Taal: English
Imprint: Morgan Kaufmann
Technische kenmerken
Verschijningsvorm: E-book
 

Inhoudsopgave:

\u003cp\u003e\u003ci\u003eData Mining: Practical Machine Learning Tools and Techniques, Fifth Edition, \u003c/i\u003eoffers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated new edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.\u003cbr\u003e\u003cbr\u003eExtensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including more recent deep learning content on topics such as generative AI (GANs, VAEs, diffusion models), large language models (transformers, BERT and GPT models), and adversarial examples, as well as a comprehensive treatment of ethical and responsible artificial intelligence topics. Authors Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal, along with new author James R. Foulds, include today\u0026rsquo;s techniques coupled with the methods at the leading edge of contemporary research\u003c/p\u003e\u003cul\u003e\u003cli\u003eProvides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects\u003c/li\u003e\u003cli\u003ePresents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods\u003c/li\u003e\u003cli\u003eFeatures in-depth information on deep learning and probabilistic models\u003c/li\u003e\u003cli\u003eCovers performance improvement techniques, including input preprocessing and combining output from different methods\u003c/li\u003e\u003cli\u003eProvides an appendix introducing the WEKA machine learning workbench and links to algorithm implementations in the software\u003c/li\u003e\u003cli\u003eIncludes all-new exercises for each chapter\u003c/li\u003e\u003c/ul\u003e
leveringsvoorwaarden privacy statement copyright disclaimer veelgestelde vragen contact
 
Welkom bij SALUS